

7–8 June 2016 | Milan Marriott Hotel | Milan, Italy

Implementation of APC on a Mild HydroCracking Unit at BAYERNOIL's Neustadt Refinery

by

Arnold Kleine Büning – BAYERNOIL
Stephen Finlayson – AMT
Zak Friedman – Petrocontrol

BAYERNOIL History

MHC – Process flow diagram

Overview

- The MHC converts 70% of feed to distillates
- The application covers the reaction and separation sections
 - ➤ 6 Subcontroller
 - > 50 MV
 - > 127 CV
- This presentation is focused on control of the separation section

MHC APC Application Implementation

- The MHC APC Application was developed using the following technologies:
 - ➤ AMT/Petrocontrol's Generalized Cutpoint Calculation (GCC) for the inferential product quality models
 - ➤ Aspen's DMCplus for APC software
 - ➤ Aspen's IQ on-line technology for real time execution of the GCC model
- Design and Implementation of the application was done by AMT supported by Petrocontrol

MHC APC Application Key Objectives

- The combined APC application maximizes product yields
 - The NAPHTHA product rate is minimized to:
 - The lower limit for the **KERO FLASH** or the **NAPHTHA 95% point**
 - The KEROSENE draw flow is maximized up to:
 - ➤ The upper limit for the **KERO 95% point**
 - The upper limit for the KERO stripper level valve
 - The DIESEL draw flow is normally maximized up to:
 - The upper limit of the **DIESEL CLOUD**, or **DIESEL 90% point**
 - The upper limit of the DIESEL stripper level valve or
 - The lower limit for the overflash flow or level valve

MHC Fractionator Inferences

- The GCC inferential quality models are used to control product properties
 - Naphtha, kerosene and diesel inferences used for control of those key qualities
 - ➤ Analyzers are available for all key properties and are used as a backup to the inferences
- GCC calculates overflash and internal refluxes
 - ➤ GCC generated "overflash" or diesel internal Reflux are used to constrain the Diesel draw and heat balance when necessary

GCC Model and Inferential Concepts

Predict TBP curve from F, T, P measurements

GCC Concepts

Property Predictions

- > A function of cuts, internal reflux, others
- > Example:

DK 90% = K1*CPK+K2*CPD+K3*[FDK/(FDK+FIntRef)]+Bias

Overflash Model

- > Predict column temperatures in the wash zone
 - A function of overflash
- Calculate overflash flow so the predicted temperature equals the measured temperatures

GCC Inferential results

Overflash & Diesel IR – 7 Months

H-Naphtha 95% Point – 7 Months

Kerosene Flash Point - 7 Months

Kerosene 90% Point – 7 Months

Diesel Cloud Point – 7 Months

Diesel 90% Point - 7 Months

GCC Calculated Conversion

APC Application Performance

MHC-DMC	Commissioning	AMT Weeks on Site	Project Duration
Part 1: Fractionation	April 2013	< 4	< 6 month
Part 2: Reactor	December 2014	< 5	< 4 month

- Acceptance from operations is very high
 - > For inferentials
 - For control application

=> Service factor > 95%

APC with DMCplus and GCC

Diesel 90%-Pt Target – 16 Days

Kero 90%-Pt Target – 26 days

Performance After Start-Up

Performance After Start-Up

Benefits

APC Benefits Diesel Cloudpoint

APC Benefits Kero 90%-Point

APC Application Benefits

Product	Mass Balance Shifts m³/h t/h		Benefits Realized [€/h]
Bottoms UCO	0,4	0,3	139
Kerosene	4,8	3,9	2.372
Diesel	-2,2	-1,9	- 952
Overhead Naphtha	-3,1	-2,3	- 1.032

Hourly Yield Benefit 527 €/h

Annual Yield Benefit > 4.200.000 €/a

Conclusions

Conclusions APC performance

- Sustaining APC performance is the most important factor in realizing the benefits for this application
 - The design and development of the MHC application has delivered on the long term benefits case
- The MHC application has a high service factor because
 - The major and difficult operating constraints are addressed
 - Accurate, high quality property predictions were developed
- The application has less than a 6 month simple pay-back period

Thank you!

Comments/Questions?

