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Abstract

With changing availability and prices of feedstock as well as changing product demands,
many operating olefins plants have to keep searching for the most optimum way of
running their unit with several key constraints active. Rigorous real-time closed loop
optimizers have been accepted by many operating olefins plants around the world as the
preferred automation enabling application for optimizing the operations of the plant
working in unison with advanced controllers. Depending on the plant constraints, the
skill set of the engineers, the availability of technical resources and various other key
factors, one has to make a decision on the economic viability of the rigorous plant wide
optimizer. There have been only a few running optimizers reported where the furnaces
are modeled rigorously and the rest of the process is modeled with component splitters. A
furnace optimizer has been implemented recently at the world-scale naphtha cracker of
Keiyo Ethylene in Japan. The optimizer has been able to move furnace severity to
maximize propylene production while honoring many key plant constraints and a target
ethylene production rate. The optimizer runs at a much higher frequency than a typical
rigorous plant-wide optimizer. Hence, the optimizer can respond to naphtha feed
composition changes much faster than a rigorous optimizer. Benefits and implementation
issues will be discussed in this paper. With over capacity of ethylene, many olefins plants
are trying to operate in a mode where propylene production rate is maximized. The
simplified backend furnace optimizer offers a very attractive alternative in maximizing
plant profitability.



Introduction

Using rigorous first principle process models to optimize the operation of olefins plants
has been applied successfully at various operating plants worldwide. These optimizers
play an important role in maximizing the profitability of the plants. The majority of these
optimizers use SPYRO from Technip to model the cracking coil and the rest of the
process is modeled using readily available rigorous models from the simulation software.
These optimizers also use equation-based modeling technology. The typical size of such
a process model representing a liquid cracker is well over 150 thousand equations and the
number of non-zeros in the Jacobian matrix is about 2 million depending on the number
of furnaces and components used in various sections of the process model. During the
optimization cycle, two cases are typically solved; the first case is to tune the model to
match the current operating conditions and the second case is the actual optimization case
starting from the tuned process model. A model of this size took about an hour to
complete the whole cycle with a very high end OpenVMS server five years ago. In the
past 2 to 3 years, many optimizers were implemented with PC as the main computing
platform. Also, the speed of the processor continues to improve dramatically. With a high
end PC today, the optimization cycle can be completed in about 30-40 minutes depending
on problem size. One main benefit of using the PC as the computing platform is the cost
of the hardware. The cost of the hardware is not a significant fraction of the total cost of
the optimizer anymore. However, the total cost of such an optimizer is still a significant
investment.

One important task that has to be continued to achieve the economic benefit of the system
is the maintenance of the optimizer post commissioning in order to maintain a high
service factor. The maintenance work can take between 20 to 40 percent of a process
engineer’s time depending on the robustness and offline application of the model. The
process engineer who was involved in the original optimization project typically
performs this task. To be able to work with the optimizer effectively, several key skills
are needed. These are as follows:

e Familiarity of the actual process and the control configuration (basic and
advanced)

¢ Understanding of the process model representing the plant

e Familiarity of equation-based technology and the solver used to solve the
equations

e Understanding of the modeling software

e Understanding of the online closed-loop configurations and how the
optimizer interacts with the advanced controller

During commissioning of the optimizer, the project team typically strives to push the
online model to the highest state of robustness possible by building many validity checks
on key process tags that are brought in from the DCS or plant historian to fit the model
parameters. In addition, for plants that can process various feed types, there may be a
need to build initialization files so that the model can move from one feed scenario to



another without any human intervention. The online model needs to be as robust as
possible in order to maintain a high service factor thus delivering benefits to operating
plants.

Furnace Optimizer

The concept of a furnace optimizer is not new. There have been a few such optimizers
implemented around the world. Most of them were employed in gas crackers. The
reported results were good and the furnace optimizer definitely delivered economic
benefits to the plant. The furnace optimizer essentially only optimizes the furnace
severity/conversion due to the rigor of the modeling approach taken. For the furnaces,
SPYRO is used to represent the cracking coil. For the rest of the plant, only simple flow
splitters, component splitters and mixers are used in the process model. Hence, the model
only performs material balance for the plant sections after the furnaces. In addition to the
material balance, key constraints of the process that are not captured by the process
model have to be represented in the optimizer. The linear gain model from the advanced
controller (DMCPlus) is typically used to capture such constraints. Since simplification is
needed in implementing furnace optimizer, there can be several variations of the furnace
optimizer. That is, the rigor of the model after the furnaces can vary from one optimizer
to the other depending on the key active constraints.

Keiyo’s olefins plant is furnace limited during decoking and back end limited with all
furnaces in operation. This plant is the largest and one of the most modern olefins plants
in Japan. The primary feedstock is naphtha. The naphtha composition changes regularly.
Hence, there is a strong need for the automation of setting furnace severity while running
the backend of the process as close to the process constraints as possible. With the
demand of ethylene and propylene changing so rapidly, the plant quite often runs in
maximizing propylene mode while maintaining a certain desired ethylene production
rate. However, the plant can be backend limited if all of the furnaces are online. Keiyo
decided that significant benefits could be captured by implementing a furnace optimizer.

For the furnace optimizer implemented at Keiyo Ethylene’s olefins plant, SPYRO was
used to model the cracking coil. The rest of the process was represented using simple
component and flow splitters, mixers and linear gain models from DMCPlus. As one of
the key initiatives in improving the plant profitability, DMCPIlus and Feed Maximizer
technology from Aspen Technology were implemented providing the backbone for
implementing the furnace optimizer. DMCPlus is a multi-variable controller software
package and Feed Maximizer is the composite linear program that combines all of the
key DMCPlus controllers to maximize the feed to the furnace while honoring all of the
key constraints in the backend of the process. More information about these technologies
can be found in several papers published in the literature. For the furnace control,
SPYRO was also used to predict furnace severity. For the naphtha feed, there is an online
analyzer providing a carbon number based PINA composition of the feed. This is
obviously very important; otherwise, there is no point in using SPYRO to predict furnace
severity since the feed composition affects the furnace cracking prediction directly. The
principle of garbage-in-garbage-out still applies. Although furnace effluent analyzers are



present, they are not used to update the model in a closed loop fashion. The overall
structure of the system is shown in Figure 1. A+ Optimizer is the equation-based
environment within the standard AspenPlus modeling tool. This is the modeling tool that
was used to implement the furnace optimizer. The optimizer is a layer on top of the
advanced controller.

Implementation Details

While the controller was being implemented, the process model needed to implement the
furnace optimizer was developed. It is very important that both of the SPYRO models
(control and optimization) use the same furnace tuning parameters. Since the problem
size of the furnace optimizer was very small compared to a typical full-scale rigorous
optimizer, the optimization cycle could be completed in less than 5 minutes using a
Pentium 3 processor running at 1GHz with 1GB of memory. The furnace optimizer has
about 15 thousand equations. Averaged values of process tags for all of the furnace
related process measurements were used. For the backend of the plant, the steady state
predictions from DMCPlus linear program were used as measurements as shown in
Figure 1. Since the furnace optimizer was configured to wait for only 30 minutes after
implementation of new targets, it was not possible to see the changes in the backend of
the process if the actual process measurements coming from the backend of the plant
were used. Also, using the DMCplus steady state predictions allowed the typical steady
state check which starts the optimization cycle to be tuned very loosely. The optimizer
was able to send more than 40 solutions a day to the controller. During the
commissioning of the furnace optimizer, findings indicated that it was imperative to
include feed forward effects to the backend process variables for changes in furnace
severity in the controller; otherwise, the feed maximizer would cut too much feed and put
the feed back again later. Also, since the furnace optimizer ran at a much higher
frequency compared to a rigorous optimizer, if there was any inconsistency between the
controller and the optimizer, the problem would manifest itself quickly when the
optimizer was switched on. This was particularly true as the plant was approaching the
critical constraints.

Besides being consistent in process active constraint prediction, the behavior of the
optimizer must be consistent with the feed maximizer as well when increasing or
decreasing coil outlet temperatures. The coil outlet temperature effects of different
furnaces were balanced in the optimizer just like the feed maximizer. That is, coil outlet
temperatures were increased or decreased in groups. Also, the optimizer was configured
to cut feed as well when key constraints were violated because the feed maximizer would
do the same thing. Feed rates to furnaces were also balanced the same way the feed
maximizer managed the furnace feed rates.



Results and Discussions

The furnace optimizer delivered the nonlinear trade-off between severity and yield while
honoring the key constraints in the process. The feed maximizer alone could not deliver
the nonlinear trade-off benefit since it was solving the linear problem. In addition, the
combination of the furnace optimizer and the feed maximizer allowed more constraints to
be pushed simultaneously. The feed maximizer alone can only adjust feed rates. The
severity adjustments provided by the furnace optimizer allowed more benefits to be
achieved. Also, since the furnace optimizer ran at a higher frequency than a typical
rigorous plant wide optimizer, it was able to respond to feed composition changes
quickly. If the optimizer was switched off, one would see that the operators were much
more conservative in setting the furnace severity while pushing the plant constraints
during naphtha tank swap.

The furnace optimizer required much less engineering effort in configuring the process
model than a typical rigorous plant wide optimizer. Also, the process model can be
upgraded to a full-scale rigorous optimizer as the need arises on a step-by-step approach.
This makes it possible to balance the implementation cost and the potential benefit. The
offline benefit of the furnace optimizer is clearly limited compared to the one delivered
by a rigorous optimizer. Findings also indicated that the furnace optimizer requires much
less maintenance since most of the process models are splitters and mixers. The overall
process model obviously has less complexity due to simplification of the separation
sections of the process. Very few convergence problems were encountered during the
commissioning of the optimizer.

Since the furnace optimizer used the controller gain model in predicting backend
constraints and the steady state prediction of backend process variables were used in the
furnace optimizer model as measurements, it was very critical that the controller gain
model was accurate. For instance, if the steady state prediction were cycling, the move
calculated by the optimizer would cycle as well. As mentioned earlier, the furnace
optimizer ran at a higher frequency than a rigorous plant-wide optimizer. These cycling
problems would have shown up quickly if they did exist during commissioning. Due to
the tight integration between the furnace optimizer and the controller, experience shows
that it is critical that both the advanced control team and the optimization team to be at
the site at the same time during commissioning.

Figure 2, 3, 4 and 5 have about 3 days of operating data at Keiyo ethylene plant. All
figures cover the same period of plant operations. During that period, the furnace
optimizer was switched on. The furnace severity used in the figures is the effluent
propylene to ethylene (P/E) ratio. In light of confidentiality, plant naphtha feed rate,
ethylene production rate and P/E ratio were scaled using typical nominal value. The plant
had 10 furnaces running initially and one furnace was brought down for decoke at the end
of operating data shown. There were two feed naphtha composition swaps in the data as
shown in Figure 4 where naphtha specific gravity increased twice. Figure 2 shows the
severity adjustment made by the furnace optimizer when the plant was approaching the
DCS feed constraint. When there was no room in the DCS area, the furnace optimizer



reduced the P/E ratio to maximize ethylene production. As indicated in Figure 2, the high
limit of the DCS5 feed was raised. The furnace optimizer immediately took advantage of
the extra capacity by increasing P/E ratio to maximize propylene production and hence
pushing more gasoline feed to DC5 column. Figure 3 shows the charge gas compressor
(CGC) power as the furnace severity was adjusted by the optimizer. Looking at both
Figure 2 and Figure 3, it was clear that the optimizer moved the plant to approach both
the DCS feed constraint and the charge gas compressor constraint. Ethylene production is
shown in Figure 4. When the plant was approaching the DC5 feed constraint, the furnace
optimizer increased ethylene production by reducing P/E ratio while maintaining the
plant at or close to the DCS feed high limit. Plant total naphtha feed is shown in Figure 5.
Working with the CLP, the total feed naphtha was maximized while the backend
constraints (DCS5 feed and CGC power) were active. Also shown in Figure 5 is the total
charge prediction from the furnace optimizer and the actual total charge. The optimizer
prediction agreed with the actual charge quite well. This illustrates that the optimizer’s
prediction on backend constraints was very good and the prediction was consistent with
the control (DMCPlus). The prediction of two major backend constraints was shown in
Figure 2 and Figure 3. DMCPlus’ steady state prediction and the optimizer prediction
were very close to each other. This is a key factor in the success of the furnace optimizer
guiding the plant successfully to its constraints. During the period of 10-furnace
operation, the plant was either very close to or at both the DC5 feed constraint and the
charge gas compressor power constraint. When a furnace was brought down for decoke,
the plant was furnace limited. Then, the furnace optimizer increased the P/E ratio to
increase the yield of propylene.

Conclusions

The furnace optimizer was implemented successfully at a naphtha cracker. There is an
upgrade path for the optimizer as the need arises to include more rigor in the backend of
the process. The payback of the implementation cost for the optimizer is very good even
in today’s investment requirements demanded by many manufacturing companies. For
olefins plants that have many feed changes and are operating against back end constraints
strongly affected by cracking severity, the furnace optimizer is an attractive option to
consider. The furnace optimizer was able to capture more than 80 percent of the potential
benefits of applying rigorous online optimization associated with severity adjustment.
These benefits were captured with a significantly lower implementation cost and
maintenance requirement. The furnace optimizer was not able to capture energy
conservation benefits due to the simplified models employed for the recovery section of
the ethylene plant.
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Figure 2 DCS5 feed constraint and furnace severity
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Figure 3 CGC power constraint and furnace severity
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